Resumen
Una de las preocupaciones en la pandemia de la COVID-19 es si las enfermedades tiroideas autoinmunitarias (ETA) facilitan la infección y la gravedad de las complicaciones y si el virus por sí mismo puede alterar la función tiroidea. A la fecha, no se ha demostrado que la COVID-19 sea más frecuente o grave en pacientes con ETA; particularmente, no existe correlación con la enfermedad pulmonar grave en la COVID-19. Esto incluye a los pacientes críticamente enfermos en la unidad de cuidados intensivos (UCI). En dichos casos puede presentarse un cuadro clínico de síndrome de enfermedad no tiroidea. Es importante que, durante el tiempo de la pandemia, se estimule la continuación del tratamiento tiroideo recibido y del control adecuado y no se suspenda durante la hospitalización.
Referencias
1. Vanderpump MPJ, Tunbrldge WMG, French JM, Appleton D, Bates D, Clark F, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995;43(1):55- 68. doi: 10.1111/j.1365-2265.1995.tb01894.x.
2. Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol. 2017;8:521. doi:10.3389/fimmu.2017.00521/full.
3. Iddah MA, Macharia BN. Autoimmune Thyroid Disorders. 2013:509764. doi: 10.1155/2013/509764.
4. Tomer Y, Davies TF. Infection, Thyroid Disease, and Autoimmunity. Endocr Rev. 1993;14(1):107-20. doi: 10.1210/edrv-14-1-107.
5. Berger SA, Zonszein J, Villamena P, Mittman N. Infectious Diseases of the Thyroid Gland. Clin Infect Dis. 1983;5(1):108-22. doi: 10.1093/clinids/5.1.108.
6. Wang PW, Liu RT, Juo SHH, Wang ST, Hu YH, Hsieh CJ, et al. Cytotoxic T Lymphocyte-Associated Molecule-4 Polymorphism and Relapse of Graves’ Hyperthyroidism after Antithyroid Withdrawal. J Clin Endocrinol Metab. 2004;89(1):169-73. doi: 10.1210/jc.2003-030854.
7. Martin A, Barbesino G, Davies TF. T-Cell Receptors and Autoimmune Thyroid Disease—Signposts for T-Cell-Antigen Driven Diseases. Int Rev Immunol. 1999;18(1-2):111-40. doi: 10.3109/08830189909043021.
8. Arata N, Ando T, Unger P, Davies TF. By-stander activation in autoimmune thyroiditis: Studies on experimental autoimmune thyroiditis in the GFP+ fluorescent mouse. Clin Immunol. 2006;121(1):108-17. doi: 10.1016/j. clim.2006.03.011.
9. Werner J, Gelderblom H. Isolation of foamy virus from patients with de Quervain thyroiditis. Lancet. 1979;2(8136):258-9. doi: 10.1016/s0140- 6736(79)90275-7.
10. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J. 2009;6(1):5. doi: 10.1186/1743-422X-6-5.
11. Ohsako N, Tamai H, Sudo T, Mukuta T, Tanaka H, Kuma K, et al. Clinical characteristics of subacute thyroiditis classified according to human leukocyte antigen typing. J Clin Endocrinol Metab. 1995;80(12):3653-6. doi: 10.1210/jcem.80.12.8530615.
12. Brix TH, Kyvik KO, Hegedüs L. A Population-Based Study of Chronic Autoimmune Hypothyroidism in Danish Twins. J Clin Endocrinol Metab. 2000;85(2):536-9. doi:10.1210/jcem.85.2.6385.
13. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A. 2003;100(25):15119-24. doi: 10.1073/pnas.2434175100.
14. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. doi: 10.12932/AP-200220-0772.
15. Centro para el Control y la Prevención de Enfermedades. Información básica sobre el SRAS [Internet]. [citado 4 de mayo de 2020]. Disponible en: https://www.cdc.gov/sars/about/fs-sars-sp.html.
16. Chetambath R, Parengal J, Aslam M, Shivashankaran S. Severe pneumonia in a young female with a possible causal relationship to hypothyroidism -A case report and review of literature. Int J Med App Res. 2017;2(2):17-24. Disponible en: https://bit.ly/2BhobGI.
17. Wei L, Sun S, Xu C, Zhang J, Xu Y, Zhu H, et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol. 2007;38(1):95-102. doi:10.1016/j.humpath.2006.06.011.
18. Baharoon SA. H1N1 infection-induced thyroid storm. Ann Thorac Med. 2010;5(2):110-2. doi: 10.4103/1817-1737.62475.
19. Brancatella A, Ricci D, Viola N, Sgrò D, Santini F, Latrofa F. Subacute Thyroiditis After Sars-COV-2 Infection. J Clin Endocrinol Metab. 2020;105(7):dgaa276. doi:10.1210/clinem/dgaa276.
20. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-64. doi: 10.15585/mmwr.mm6915e3.
21. Richardson S, Hirsch J, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-9. doi: 10.1001/jama.2020.6775.
22. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020. doi:10.1111/all.14238.
23. Marín-Sánchez A. Características clínicas básicas en los primeros 100 casos de mortalidad Covid19-SARS2 en Colombia. Rev Panam Salud Pública Pan Am J Public Health. 2020.
24. Wang W, Ye YX, Yao H, et al. Evaluation and observation of serum thd parathyroid hormone in patients with severe acute respiratory syndrome [Internet]. CNKI. 2003. [citado 4 de mayo de 2020]. Disponible en: http://en.cnki.com.cn/Article_en/CJFDTotal-ZFLZ200304012.htm.
25. Leow MKS, Kwek DSK, Ng AWK, Ong KC, Kaw GJL, Lee LSU. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf). 2005;63(2):197-202. doi: 10.1111/j.1365-2265.2005.02325.x.
26. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARSCoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622-30. doi: 10.1002/path.1560.
27. De Remigis A, de Gruijl TD, Uram JN, Tzou SC, Iwama S, Talor MV, et al. Development of thyroglobulin antibodies after GVAX immunotherapy is associated with prolonged survival. Int J Cancer. 2015;136(1):127-37. doi: 10.1002/ijc.28973.
28. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. doi: 10.3390/ v12030254.
29. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. doi: 10.1016/j.jaut.2020.102434.
30. Choi J, Kim MG, Oh YK, Kim YB. Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review. Expert Opin Ther Pat. 2017;27(6):721-31. doi:10.1080/13543776.2017.1281248.
31. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3):623. doi: 10.3390/jcm9030623.
32. Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines. 2017;16(9):883-94. doi: 10.1080/14760584.2017.1357471.
33. Boelen A, Kwakkel J, Fliers E. Beyond Low Plasma T3: Local Thyroid Hormone Metabolism during Inflammation and Infection. Endocr Rev. 2011;32(5):670-93. doi:10.1210/er.2011-0007.
34. Peeters RP, van der Geyten S, Wouters PJ, Darras VM, van Toor H, Kaptein E, et al. Tissue Thyroid Hormone Levels in Critical Illness. J Clin Endocrinol Metab. 2005;90(12):6498-507. doi: 10.1210/jc.2005-1013.
35. Mebis L. The hypothalamus-pituitary-thyroid axis in critical illness. J Med. 2009;67(10):332-40.
36. Langouche L, Vander Perre S, Marques M, Boelen A, Wouters PJ, Casaer MP, et al. Impact of Early Nutrient Restriction During Critical Illness on the Nonthyroidal Illness Syndrome and Its Relation With Outcome: A Randomized, Controlled Clinical Study. J Clin Endocrinol Metab. 2013;98(3):1006- 13. doi: 10.1210/jc.2012-2809.
37. Schütz P, Bally M, Stanga Z, Keller U. Loss of appetite in acutely ill medical inpatients: physiological response or therapeutic target? Swiss Med Wkly. 2014;144:w13957. doi: 10.4414/smw.2014.13957.
38. Ringel MD. Management of Hypothyroidism and Hyperthyroidism in the Intensive Care Unit. Crit Care Clin. 2001;17(1):59-74. doi: 10.1016/s0749- 0704(05)70152-4.
39. Carrillo-Esper R, Peña-Pérez CA, Zárate-Vega V, Garcilazo-Reyes Y, Lee-Cervantes D, González-Noris PY. Disfunción tiroidea en el enfermo grave. Rev Invest Med Sur Mex. 2013;20(4):217-28.
40. Giamarellos-Bourboullis E, Netea M, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27(6):992-1000. doi: 10.1016/j.chom.2020.04.009.
Palabras Clave
COVID-19
SARS-CoV-2
enfermedad tiroidea autoinmunitaria
tiroiditis de Hashimoto
enfermedad de Grave
pandemia
criticamente enfermo
Para citar
Marin, A., Rojas, L. J., Mejia, M. G., Builes, C. A., Arenas, H. M., & Duque, J. J. (2020). Enfermedad tiroidea autoinmunitaria y SARS-CoV-2/COVID-19. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(2S), 103–108. https://doi.org/10.53853/encr.7.2S.594